Chapter III Special Distributions

1 Binomial Distribution (James Bernoulli)

Consider a random experiment, which is so defined that it has only two possible outcomes which we call *success* and *failure*. Let p be the probability of a success and q = 1-p be the probability of failure. Let the experiment be repeated n times. Also assume that the trails are independent and the probability of success p remains unaltered by trail to trail. Then obviously the number of success in n trails is a random variable. Let X denote the number of successes in n independent repetitions of this experiment and let f(x) be the p.d.f. of X.

If the *x* repetitions in which success occurs are specified, the probability of success in these *x* repetitions and failures in the remaining n - x repetitions is $p^x q^{n-x}$ by the multiplication theorem the repetitions being independent. The *x* trials in which success occurs may be specified in $\binom{n}{x}$ mutually exclusive ways. So the event X = x can occur $in\binom{n}{x}$ mutually exclusive ways and probability of each is $p^x q^{n-x}$. So by addition theorem, the required probability is $\binom{n}{x} p^x q^{n-x}$.

i.e.

$$f(x) = \binom{n}{x} p^x q^{n-x}, x = 0, 1, ..., n, 0 \le p \le 1.$$

This distribution is called binomial distribution.

Definition:- A discrete random variable X is said to follow a binomial distribution with parameters n and p if its probability density function is given by

$$f(x) = \binom{n}{x} p^{x} q^{n-x}, x = 0, 1, ..., n, 0 \le p \le 1, p+q=1.$$

Assumption of Binomial distribution can be applied

- 1. The random experiment has two outcomes, which can be called "success" and "failure"
- 2. Probability for success in a single trails remains constant from trail to trail of the experiment.
- 3. The experiment is repeated a finite number of times
- 4. The trails are independent.

Properties

Mean:

- 1. Mean = E(X) = np and variance = V(X) = npq.
- 2. If (n+1)p is integer the binomial distribution has two mode one at (n+1)p-1 and the other at (n+1)p. If (n+1)p is not an integer then the integer part of (n+1)p is the mode.
- 3. If $p = q = \frac{1}{2}$ the distribution is symmetrical and when $p \neq q$ the distribution is a skewed distribution.
- 4. If X_i (i=1, 2, ..., k) are independent binomial random variate with parameters (n_i, p) . Then $S_k = \sum_{i=1}^k X_i$ has a binomial distribution with parameters $(\sum_{i=1}^k n_i, p)$. (This property is called additive or reproductive property).
- 5. If n is very large and if neither p and q is too close to zero binomial distribution may be approximated by normal distribution.

np

	92(7.4)
Variance:	np(1-p)
Mode:	The largest integer $\leq (n+1)p$
Mean Deviation:	$2n\binom{n-1}{m}p^{m+1}(1-p)^{n-m}$, where <i>m</i> denotes the largest integer $\leq np$. [Kamat 1965]
Coefficient of Variation:	$\sqrt{\frac{1-p}{np}}$
Coefficient of Skewness:	$\frac{1-2p}{\sqrt{np(1-p)}}$
Coefficient of Kurtosis:	$3 - \frac{6}{n} + \frac{1}{np(1-p)}$

2 Normal Distribution

A continuous random variable X with p.d.f.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{\frac{-(x-\mu)^2}{2\sigma^2}\right\}, -\infty < x < \infty$$

is said to follow normal distribution with parameters (μ , σ).

Properties

- 1. The normal curve is bell shaped, unimodal, symmetric about the mean and approaches to the *x* axis at $\pm \infty$.
- 2. The mean, mode and median coincide at $x = \mu$ and σ is the standard deviation.
- 3. The odd central moments are zero.
- 4. The curve is mesokurtic
- 5. It has points of inflexion at $x = \mu \pm \sigma$.
- 6. The mean deviation about the mean is $\frac{4}{5}\sigma$
- 7. The quartile deviation is $\frac{2}{3}\sigma$
- 8. The interval $(\mu 2\sigma, \mu + 2\sigma)$ contains 95% of the area and $(\mu 3\sigma, \mu + 3\sigma)$ contains 99% of the area under the curve.
- 9. If X has normal distribution with parameter (μ, σ) and a and b are any two real numbers then the random variable Y = aX + b is also a normal distribution with parameters $(a\mu + b, a\sigma)$.
- 10. If X and Y are independent normal variate with mean and SD (μ_1 , σ_1) and (μ_2 , σ_2) and a and b are any two real numbers then the random variable Z = aX + bY is also a normal distribution with mean and SD ($a\mu_1 + b\mu_2$, $\sqrt{a^2\sigma_1^2 + b^2\sigma_2^2}$).

Figure 10.2 Normal pdfs with $\mu = 0$

Figure 10.3 Normal pdfs with $\sigma = 1$

Mean:	μ
Variance:	σ^2
Coefficient of Variation:	σ/μ
Median:	μ
Mean Deviation:	$\sqrt{\frac{2\sigma^2}{\pi}}$
Coefficient Skewness:	0
Coefficient of Kurtosis:	3

Standard Normal Distribution

A normal distribution with mean zero and variance one is called a standard normal distribution. That is the pdf of the standard normal distribution is

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{\frac{-x^2}{2}\right\}, -\infty < x < \infty$$

Note: If X is a normal (μ, σ) then $Z = \frac{x-\mu}{\sigma}$ has standard normal distribution.