

Goal Programming Problem

Example:

A factory can manufacture two products A and B. The profit on one unit of A is Rs 80 and one unit of B Rs 40. The maximum demand of A is 6 units per week, and of B it is 8 units per week. The manufacturer has set up a goal of achieving a profit of Rs 640 per week. Formulate the problem as goal programming and solve it.

Let x_1 = number of units of A to be produced per week And x_2 = number of units of B to be produced per week Also let f be the profit

Then $f = 80x_1 + 40x_2$

Goal is 640

f may exceed the goal of 640 or fall short of it

Let $u \ge 0$ denote the shortfall (under achieved)

 $v \ge 0$ the excess (over achieved) in profit from the goal.

- ► Three possibilities exist. Goal will be:
 - 1. Exactly achieved (u = v = 0)
 - 2. Over-achieved (u = 0, v > 0)
 - 3. Under-achieved (u > 0, v = 0)

So, only those solutions are acceptable in which at least one of the variables, u or v, is zero or both are zero.

So,

either
$$f = 640 - u$$

or $f = 640 + v$

Combining these two conditions, we get:

$$f + u - v = 640$$

where at least one of the variable, u or v, is zero

To achieve the goal as closely as possible, the objective should be to minimize the deviation from the goal.

Problem formulation

Minimize
$$F = u + v$$

subject to $80x_1 + 40x_2 + u - v = 640$

$$x_1 \le 6$$

$$x_2 \le 8$$

$$x_1, x_2, u, v \ge 0$$

Such that either u or v or both equal to zero

Considering the $f = 80x_1 + 40x_2$

On the line DE (shown in red colour), f = 640.

Thus, goal can be exactly met by choosing x_1 , x_2 such that (x_1, x_2) lies on DE.

For points on DE, u = v = 0, giving minimum value of F.

If (x_1,x_2) falls in DEC (shown in peach colour) then profit is over and above 640 (u=0, v > 0).

If (x_1,x_2) falls in OADEB (shown in purple colour) then profit is less than 640 (u > 0, v = 0).

Solution Using Simplex method

Minimize
$$F = u + v$$

s. t.
$$80x_1 + 40x_2 + u - v = 640$$

$$x_1 \le 6$$

$$x_2 \le 8$$

$$x_1, x_2, u, v \ge 0$$

Such that either u or v or both equal to zero

LP in standard form

Minimize
$$F = u + v$$

s. t.
$$80x_1 + 40x_2 + u - v = 640$$
$$x_1 + x_3 = 6$$
$$x_2 + x_4 = 8$$

$$x_1, x_2, u, v, x_3, x_4 \ge 0$$

Such that either u or v or both equal to zero

Perform the simplex calculations making sure that at any iteration, u and v do not enter the basis together. Either u is in the basis or v is in the basis or none of them is in the basis.

Д		0	0	-1	+1	0	0	
C _B	Basis	\mathbf{x}_1	X2	u	V	X3	\mathbf{x}_4	RHS
-1	u	80	40	1	-1	0	0	640
0	X3		0	0	0	1	.0	6
0	X4	0	j	0	0	0	1	8
		80	40	0	-2	0	.0	-640
-1	u:	0	(40)	1	-1	-80	0	160
0	X ₁	1	0	0	0	1	0	6
0	X4:	0	İ	0	0	0	1	8
	NY I	0	40	0	-2	-80	0	=-160
0	8X2	0	Ì	1/40	-1/40	=2	0	4
0	\mathbf{x}_1		10	0	0	l I	0	6
0	X4	0	0	-1/40	1/40	2	1	4
		0	20	-1	-1	0	0	z=0

Solution is $x_1 = 6$ and $x_2 = 4$, with z = 0.

This corresponds to the point D(6, 4) in the graphical solution

But the optimal table indicates that this is the case of multiple solutions.

So perform another iteration.

		0	0		3	0	0	24
C _B	Basis	Xi	X2	Ü.	V	X3	X4	RHS
Ö	X ₂	0	1	1/40	-1/40	-2	0	4
0	X ₁	-1	0	0	0	1	0	6
0	X4:	0	0	-1/40	1/40	(2)		4
		0	0	s.d	-1	0	0	z=0
0	X ₂	0	1	0	0	0	1	8
0	$\mathbf{x}_{\mathbf{B}}$		0	1/80	-1/80	0	-1/2	4
0	X 48	0	0	-1/80	1/80	1	1/2	2
	T I	0	0	4	-1	0	0	z=0

Alternate solution is:

 $x_1 = 6$ and $x_2 = 4$, with z = 0.

This corresponds to the point E(4, 8) in the graphical solution.

So, the problem has multiple solutions, name ly all points on the line segment joining D and E.

On the line segment DE, u = 0 and v = 0.

So the goal is exactly achieved on all points of DE.

Def: linear goal programming

Minimize
$$F = u + v$$

subject to $f(X) + u - v = g$

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i} \quad i = 1, 2, ..., m,$$

 $u, v, x_j \ge 0, j = 1, 2, ..., n,$ with either u or v or both equal to zero. Where u is the underachievement v is the overachievement and v is the goal.

ACKNOWLEDGMENT

These Slides are prepared from The NPTEL Lecture on Operation Research by Prof:
Kusum Deep, Department of Mathematics
IIT Roorkee